Jeremy Thomas, Abingdon Science Partnership Coordinator Holly Irving, Science Coordinator, Caldecott Primary School March 2020

Slippery Surfaces Investigation Lesson Plan

Resources Needed:

Box lids (such as A4 copier paper lids)/sheets of stiff card/wooden ramps/hardback books Sliding objects e.g. wooden blocks/bricks; 100g masses; coins A4 sheets of other materials e.g. paper, felt, sandpaper, J cloth

Rulers (or protractors for extension or older children) (Grid paper for plotting bar charts)

Printing/copying:

Class set of the pupil worksheet (for older pupils)
Class set of sports ball results sheet (for younger pupils)

Starter:

Display photographs from the Presentation Document to discuss useful and nuisance friction examples. Suggest/discuss occupations and situations where friction is useful or a nuisance using examples from the Support Information section below.

Method:

- Hand out the pupil worksheets if required to older pupils
- Pupils follow instructions on the Presentation slide
- Older pupils follow the worksheet, including analysis and conclusions
- Younger pupils can draw and label pictures, write down what they found out, use age appropriate skills
- An alternative investigation for younger pupils is to classify the surfaces of a range of sports balls by smoothness, as outlined in the optional Presentation slide

Outcomes:

All pupils should be able to:

- Discuss results using verbal discussion, measurements and charts why was one material more or less slippery than another?
- Use the word 'friction' accurately in the correct context as a force resulting from two surfaces in contact being pulled past each other

Challenge and next steps:

- Write a report or design a wall poster to display your findings
- Study the photographs of friction testing machines on the Presentation document create and test if possible an alternative design for a friction testing machine (e.g.
 with a pulley system to lift it or using Newton meters if available etc.)
- Carry out a 'Slipping Hazard' survey around the school or at home
- Test a range of shoes to find out which are most slippery and why

Jeremy Thomas, Abingdon Science Partnership Coordinator Holly Irving, Science Coordinator, Caldecott Primary School March 2020

Support Information for Teachers

Who needs a friction testing machine?

- Architects to choose materials for new buildings
- Engineers to use the right materials in buildings, vehicles, factories, power stations (saves energy, money, repairs...)
- Lawyers investigating accidents and claims when people slip
- Health and Safety Officers
- Think of all the places it would be important NOT to slip e.g. hospitals, ships, supermarkets, pavements ...
- Think of all the places where it would HELP to be more slippery e.g. ice rink, skis, wheels, sledges, loading ramps, playground slides, helter skelter, water slides...

Cosmetics industry Packaging industry Paper and carton manufacturing Lab substrate measurement Packaging control

Homework Projects:

Look for the slipperiest places around your home. Make a report for your family to help them make it safer.

Find out who has the slipperiest shoes in your family. Design a way to test this and tell your family what you find out.